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Reverse-blocking modular multilevel converter for battery
energy storage systems

Xiaofeng YANG1 , Yao XUE1, Bowei CHEN1, Yajie MU1,

Zhiqin LIN1, Trillion Q. ZHENG1, Seiki IGARASHI2

Abstract Energy storage systems with multilevel con-

verters play an important role in modern electric power

systems with large-scale renewable energy integration.

This paper proposes a reverse-blocking modular multilevel

converter for a battery energy storage system (RB-MMC-

BESS). Besides integrating distributed low-voltage batter-

ies to medium or high voltage grids, with the inherited

advantages of traditional MMCs, the RB-MMC-BESS also

provides improved DC fault handling capability. This

paper analyzes such a new converter configuration and its

operating principles. Control algorithms are developed for

AC side power control and the balancing of battery state of

charge. The blocking mechanism to manage a DC pole-to-

pole fault analyzed in depth. Comprehensive simulation

results validate both the feasibility of the RB-MMC-BESS

topology and the effectiveness of the control and fault

handling strategies.

Keywords Reverse blocking, Modular multilevel

converter, Battery energy storage system, SOC control,

Fault blocking

1 Introduction

In recent years, ever-increasing energy demands and

shortage of traditional fossil fuels seriously challenged the

sustainable development of human society. At the same

time, increasing concern about environment problems and

carbon emissions of fossil fuels has provoked worldwide

active research on the next-generation electric power sys-

tem, which is known as the smart grid [1–3] and/or energy

internet (EI) [4, 5]. It features renewable energy resources

and intelligent energy management. The coming energy

power generation system shifts from reliance on fossil fuels

to various renewable energy resources, such as solar and

wind power, etc. [6] However, the stochastic nature of

some renewable resources also brings new challenges to

the reliability and stability of existing power grids. Thus it

is expected that using grid-connected energy storage sys-

tem (ESS) for power buffering, peak shaving, load level-

ling and load frequency control, shall be important for

modern electric power systems with large-scale renewable

energy integration [7, 8]. Available energy storage tech-

nologies include batteries, super capacitors, flywheels, and

pumped hydro storage, where batteries are generally
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considered as the dominant new solution for large-scale

ESS due to its ability to supply power for periods of up to a

few hours [9, 10]. The cost of batteries is descending

rapidly and is expected to compete with pumped hydro in

the near future [11].

To integrate battery energy storage system (BESS)

installations to the grid, power converters should have the

following features: (1) fault ride-through capability; (2)

high redundancy and error correction capabilities. For

megawatt-scale medium-voltage (MV) application, multi-

level converters show significant advantages over con-

ventional topologies [12]. Among them, the most

promising concept for renewable energy integration and

power transmission is the modular multilevel converter

(MMC) [13–15]. Compared with conventional multilevel

converters, MMCs provide advantages of high modularity,

better harmonic spectra, lower switching frequency, higher

efficiency, and reduced weight of the filtering

components.

In the last decades, MMCs have attracted the interest of

both academia and industry. The published literature

mainly relates to their applications to high-voltage DC

(HVDC) transmission [16–18], MV electric drives [19–21],

and STATCOMs [22, 23]. MMCs used in BESSs for

interfacing low- or medium-voltage batteries to medium-

or high-voltage grids were reported in [24–27]. They

enable a flexible scaling of power modules to integrate

energy storage and power electronics to a wide range of

operating voltages, output power and stored energy.

However, existing MMC-based BESSs (MMC-BESSs) do

not address DC fault handling capabilities, and special

control issues arising in MMC-BESSs have not yet been

fully overcome. Reverse blocking (RB) IGBTs have a

symmetrical blocking voltage characteristic. Due to can-

celling anti-parallel diodes, the conduction loss of RB-

IGBTs is lower than that of normal IGBTs, so they are

especially suitable for multilevel converters for low

switching frequency application [28].

This paper proposes a reverse blocking MMC-BESS

(RB-MMC-BESS) for enhancing the DC fault handling

capability, which consists of new sub-modules (SMs) and

distributed battery banks. Typical operating principles,

detailed battery energy controls, and fault blocking mech-

anisms are thoroughly analyzed.

The paper is organized as follows. Section 2 describes

the configuration and operating principles of RB-MMC-

BESSs. Section 3 explores the battery energy and state of

charge (SOC) balancing controls in detail. The DC fault

blocking mechanism is analyzed in Section 4. To validate

the feasibility and effectiveness of the proposed topology

and theoretical analysis, extensive simulation results are

discussed in Section 5. Finally, Section 6 reports the main

conclusions.

2 Topologies and basic operations

2.1 Topologies for RB-MMC-based BESSs

A typical (n?1) level three-phase MMC-based BESS is

shown in Fig. 1, comprised of three phase legs where each

leg contains a stack of 2n identical sub-modules (SMs) and

two inductors (La).

For the convenience of discussion, the phase legs are

further divided into an upper arm and a lower arm. Unlike

conventional MMCs, the SMs integrate a battery storage

bank BSM, which can also serve as an active power port.

Fig. 1b illustrates one of the possible SM realizations

proposed in [25], which consists of two IGBTs with

antiparallel diodes and one capacitor that together form a

typical bidirectional chopper. The distributed battery banks

are directly connected across the SM capacitors. However,

when a common DC link short-circuit fault happens, the

diode D2 in each SM will create a fault current path. Large

fault currents cause thermal overstress, which may result in

severe damage to power electronic devices.

The proposed reverse blocking sub-module (RBSM) is

illustrated in Fig. 1c. Unlike the abovementioned SM, two

anti-parallel RB-IGBTs (T2 and T3) are used for the lower
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Fig. 1 General configuration of three-phase MMC-BESS
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switch, and a bypass circuit consisting of auxiliary thyristor

TS, auxiliary capacitor CS and varistor Rsr is connected in

parallel with the RB-IGBTs. The distributed battery banks

are directly connected across the RBSM capacitors CSM as

before. A MMC-BESS employing RBSMs is hereafter

called a RB-MMC-BESS.

Due to their high degree of modularity, RB-MMC-

BESSs employ distributed battery banks with lower voltage

ratings rather than centralized ones used with a conven-

tional high-voltage common DC link. In case of battery

faults, extra RBSMs can be placed in the phase leg to

replace the damaged ones. RB-MMC-BESSs also have a

fixed common DC link, which may be used to interconnect

them with a MV DC network if desired. What is more, RB-

MMC-BESSs may also transfer power from one phase leg

to another using the controlled internal circulating current

through this common DC link. This is the theoretical basis

for SOC balancing control among phase legs.

2.2 Operating principles of RBSMs

Under normal operations, T2 and T1 operate with com-

plementary switching states, while T3 is switched on all the

time and acts as a free-wheeling diode. Once fault current is

detected, the RBSMs go into fault protection mode by

blocking the control signals of the IGBTs (T1, T2 and T3).

Then the fault current starts to chargeCS throughTS, while Rsr

is designed to prevent over-voltage across CS, thus it further

avoids the potential threats to the main switching devices.

Generally, Rsr is not activated until the voltage of CS

exceeds its threshold value. Thus the function of Rsr will

not be considered in the following to simplify the analysis,

but this does not affect the correctness of the theory. The

switching states of the RBSM are listed in Table 1, where

UB is the battery voltage of BSM and Uclamp is the clamp

voltage across T2 and T3.

2.3 Operation principles of RB-MMC-BESS

As in [29] and without loss of generality, the following

analysis assumes that the operating principles of the three

phases are identical, and the conclusions are taken to apply

to three-phase conditions. Phase-j is taken as an example to

carry out the analysis, where j = a, b, c, and the following

additional assumptions are made:

1) Three-phase AC voltages and currents are pure

sinusoidal and symmetrical.

2) The common DC link voltage UDC is smooth.

3) The AC output current isj is distributed equally

between the upper and the lower legs.

4) Switching losses of the power devices are ignored.

These conditions are not exact for RB-MMC-BESSs but

in general they are fulfilled to a good approximation. The

AC terminals of an RB-MMC-BESS are connected to the

grid Usj through a series connected filter Ls. With reference

direction shown in Fig. 1, the AC currents in normal

operating mode are related by:

iPj ¼
1

2
isj þ iZj ð1Þ

iNj ¼ � 1

2
isj þ iZj ð2Þ

isj ¼ iPj � iNj ð3Þ

iZj ¼
1

2
iPj þ iNj
� �

ð4Þ

where iPj and iNj denote the upper and lower arm currents,

respectively. The arm currents flowing through both the

upper and lower arms consist of half of the AC output

current isj and the common-mode circulating current iZj.

The role of the latter in balancing the SOC of batteries is

discussed below in Section 3.2.

The resulting AC and DC voltages can be calculated as

follows :

uPj ¼
UDC

2
� uj � La

diPj

dt
� RaiPj ð5Þ

uNj ¼
UDC

2
þ uj � La

diNj

dt
� RaiNj ð6Þ

uj ¼
uNj � uPj

2
� La

2

disj

dt
� Ra

2
isj ð7Þ

UDC ¼ uPj þ uNj þ 2La
diZj

dt
þ 2RaiZj ð8Þ

where uPj and uNj denote the upper and lower arm voltages,

respectively; uj is the AC output phase voltage; UDC is the

rated common DC link voltage; and Ra is the equivalent

series arm resistor.

Under a DC link short-circuit fault condition, if the RB-

MMC-BESS keeps running according to the above rules

before system blocking, UDC will reduce to zero immedi-

ately. Then the inserted RBSMs’ capacitors CSM and bat-

tery banks BSM will be continuously discharged, and

potentially over-discharged if the fault is not cleared

quickly. Therefore some reasonable means for improving

Table 1 Switching states of a RBSM

Operation modes State T1 T2 T3 Ts iSM USM

Normal operation Discharging 1 0 1 1 \0 UB

Charging 0 0 1 1 [0 UB

Bypass 0 1 1 1 – 0

Fault protection Blocking 0 0 0 1 [0 UB

Blocking 0 0 0 1 \0 Uclamp

System starting Charging 0/1 0/1 0/1 0 [0 –
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the DC fault ride-through capability of RB-MMC-BESSs

should be found.

3 System controls

A RB-MMC-BESS operates differently to a regular

MMC. Since each RBSM includes its own battery energy

storage, which may act as the DC source, the power is not

only delivered from the common DC link. As previously

described, each arm conducts only half of the AC output

current, thus reducing conduction loss in the converter.

Unbalanced SOC of battery banks may cause premature

failure after extended cycling due to overcharging or

undercharging of batteries. The flat relationship of battery

SOC as a function of their voltage, over a wide range of

voltages, indicates the need for a SOC balancing algorithm

that does not rely on the voltages [30, 31]. Thus SOC

control in RB-MMC-BESSs is one of the main differences

compared to conventional MMCs.

The controller of a RB-MMC-BESS has two main sec-

tions: the power control and SOC balancing control. Fig. 2

shows a block diagram of the system control structure.

3.1 Power control

Active and reactive power control of three-phase RB-

MMC-BESSs is based on decoupled current control.

Considering the sinusoidal output currents, proportional

integration (PI) controllers K1 are adopted in a rotating

frame synchronized with the output frequency. Fig. 3

shows the power control block diagram for a three-phase

RB-MMC-BESS. Here, P* and Q* represent the power

commands for the instantaneous active and reactive power

at the AC side, respectively. The AC side active power P*

causes charging and discharging of the RBSMs’ capacitors

and battery banks, so the SOC and the DC link voltage are

indirectly controlled. Finally, the upper and lower arm

voltage references U�
Pj and U�

Nj are determined by the AC

side power.

3.2 SOCs balancing control

The inherent circulating current among phases is required

to charge the capacitors with the lowest SOC and discharge

the ones with the highest SOC. Therefore, it is essential to

control the circulating current of the converter to maximize

the efficiency of the SOC controls. The SOC control struc-

ture of RB-MMC-BESS is illustrated in Fig. 4, where K2 to

K5 refer to close-loop controllers such as PI controllers. SOC

balancing control of the RB-MMC-BESS is divided into

individual SM balancing, phase arm balancing, phase leg

balancing, and inner circulating current control.

Figure 4a shows the block diagram for individual SOC

balancing control; sign() denotes the signum function. This is

responsible keeping all RBSMs in the same arm at the

average arm SOC (i.e. SOCPj, SOCNj) using a close-loop

controller. The average armSOC SOCPj,SOCNj are given by:

SOCPj ¼
1

n

Xn

k¼1

SOCjk ð9Þ

SOCNj ¼
1

n

X2n

k¼nþ1

SOCjk ð10Þ

The arm SOC balancing control forces the SOC

difference between the upper and lower arms (i.e.

SOCPj-SOCNj) to be zero. The leg SOC control is
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Fig. 2 Overview of system control structures

Reverse-blocking modular multilevel converter for battery energy storage systems 655

123



www.manaraa.com

designed to force the j-phase average SOC (SOCj;ave) to

follow the average SOC of the three phases (SOCave),

where, SOCj;ave and SOCave are given by:

SOCj;ave ¼
1

2n

X2n

k¼1

SOCjk ð11Þ

SOCave ¼
1

3

Xc

j¼a

SOCj;ave ð12Þ

These control objectives can be achieved using the

circulating current. Therefore, the output signals of both

leg and arm SOC balancing controllers are i�Zj1 and i�Zj2
respectively, from which the reference circulating current

i�Zj is determined:

i�Zj ¼ i�Zj1 þ i�Zj2 ð13Þ

Together, the arm and leg SOC controls result in

direct control of the circulating current in each phase leg,

leading to good current regulation of the battery banks.

The circulating current control loop is illustrated as

Fig. 4. The current minor loop forces izj to follow the

command i�Zj, which generates the voltage control

command U�
j;cir.

Finally, the voltage reference for the upper and lower

arm of phase-j is given by:

U�
Pjk ¼

U�
Pj

n
þ U�

Pjk;ind þ U�
j;cir þ

UDC

n
ð14Þ

U�
Njk ¼

U�
Nj

n
þ U�

Njk;ind þ U�
j;cir þ

UDC

n
ð15Þ

where the inputs are shown in Fig. 2.

4 DC fault blocking mechanism

A DC pole-to-pole fault is regarded as one of the most

serious fault types. Therefore, the theory of the DC fault

blocking mechanism will be studied under this condition.

Fig. 5 shows the possible current paths after all IGBTs in a

RBSM are blocked. When current iSM is positive as shown

in Fig. 5a, the capacitor is charged through the anti-parallel

diode D1 and the fault current is limited because the

capacitor voltage UB provides an inverse voltage to switch

off the diode. Otherwise, when current iSM is negative, the

RBSM is bypassed as shown in Fig. 5b. The bypass circuit

goes to work and Cs is charged by the fault current through

the triggered TS. Cs is generally very small compared with

the CSM. Thus ucs will increase quickly to provide the

inverse voltage needed to cut off the arc path at the fault

point.

Once a pole-to-pole DC short-circuit fault occurs, the

common DC link voltage is collapsed to zero and a large

inrush current would be induced. Then the RBSMs will

enter their discharging stage immediately until system

blocking is enabled by the central control system, which is

the same behavior as the equivalent model presented in

[32]. Rather than repeating the detailed explanation found

there, this paper will focus on the fault mechanism in the

blocking stage.
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4.1 Modelling blocking mechanism

Once the RB-MMC-BESS goes into fault protection

mode following a DC pole-to-pole fault, all IGBTs are

blocked by the central control system, and the equivalent of

a phase leg is illustrated in Fig. 6. The equivalent series

capacitance of both the upper and lower arms is expressed

as

Cseq1 ¼ Cseq2 ¼
CS

n
ð16Þ

In this state, the fault current starts to charge the

auxiliary capacitor Cs through Ts. Then ucs increases

quickly to provide the inverse voltage ucsI = 2n9ucs,which

helps to extinguish the fault current. As shown in Fig. 6b, a

second-order oscillating circuit is constructed with the

equivalent series resistance Req, equivalent inductance Leq
and the equivalent capacitance Cseq. This will govern the

discharging of Cseq which may be regarded as 2n auxiliary

capacitors Cs in series. The following differential equation

is deduced from Kirchhoff’s voltage law:

d2ucs

dt
þ Req

Leq

ducs

dt
þ 1

LeqCseq

ucs ¼ 0 ð17Þ

The initial conditions and circuit parameters are:

ucsð0þÞ ¼ ucsð01�Þ ¼ 0

ifð0þÞ ¼ ifð0�Þ ¼ I0

�
ð18Þ

Req ¼ 2Ra þ Rf

Leq ¼ 2La

Cseq ¼
Cs

2n

8
><

>:
ð19Þ

where I0 is defined as the initial fault current at the

blocking stage and Rf is the short circuit resistance.

Assuming for simplicity that the auxiliary capacitor

voltages are equal, then the charging current and voltage

of each auxiliary capacitor Cs is:

ucs ¼ e�
t
s
2nI0

xCs

sinðxtÞ ð20Þ

if ¼ �e�
t
s
x0I0

x
sin xt � bð Þ ð21Þ

where s is the fault current decay time constant, x0 and x
are the natural angular frequency and system angular

frequency, respectively, and b is the initial current phase

angle. These four variables are defined as follows:

s ¼ 4La

2Ra þ Rf

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

LaCs

� 2Ra þ Rf

4La

� �2
s

x0 ¼
ffiffiffiffiffiffiffiffiffiffi
n

LaCs

r

b ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16nLa

Cs 2Ra þ Rfð Þ2
� 1

s

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð22Þ

Equations (20) and (21) indicate that ucs and the fault

current if are affected by the initial fault current I0; while

ucs is approximately inverse proportional to the RBSM’s

capacitance. In addition, the fault current if is also

influenced directly by the equivalent resistance Req and

inductance Leq.

4.2 Selecting parameters of auxiliary circuit

Without considering system redundancy, it is assumed for

simplicity that the 2n RBSMs are series-connected in each

phase leg. The voltage stress of the auxiliary capacitor always

equals USM under normal operating conditions. After system

blocking is enabled, the auxiliary capacitors are charged in

series by the fault current, and the auxiliary capacitor voltage

will reach its peak value as the current decays to zero. From

(20), the peak blocking voltage across T2 and T3 is

Uclamp ¼
ucs;peak

2n
¼ e�

b
xs

I0

xCs

sinðbÞ ð23Þ

The voltage stress across Cs is illustrated in Fig. 7,

where the clamping voltage is related to both the auxiliary

(a) Charging loop

(b) Simplified equivalent circuit
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+
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Fig. 6 Current path in the RB-MMC-BESS in the blocking state
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capacitance Cs and leg inductance La. A larger leg

inductance value means that more inductive energy will

be transformed to electric field energy, which results in

higher capacitor voltage. The smaller the auxiliary

capacitance and the larger the initial fault current I0, the

faster the capacitor voltage changes.

Therefore the value of Cs is determined by two param-

eters: the voltage limit for IGBTs (UT,max) and the opti-

mized blocking voltage (Ucs,min). The latter helps to

eliminate the AC rectification feeding energy. Therefore,

Cs should satisfy:

Ucs;min � uCs;peak �UT;max ð24Þ

4.3 Fault management

Fig. 8 shows the DC fault protection flow chart for the

RB-MMC-BESS. The operating state is monitored con-

tinuously, with both the DC link voltage and currents sent

back to the central control system, so the DC fault state

may be judged by comparing them with their threshold

values.

Once a DC fault is detected, the system will immedi-

ately block all the trigger pulses in the RB-MMC- BESS to

clear the fault currents. For non-permanent faults, it is

expected that power transmission can be restarted quickly,

so the IGBTs will be triggered to test which type of fault

has occurred. If the fault is cleared then all the IGBTs are

unblocked and the RB-MMC-BESS will be restarted. But if

a permanent fault is identified, both the AC breakers and

the DC breakers are tripped to achieve fault isolation after

fault clearance.

Generally speaking, the fault clearance time achieved

by the protection system is very short, perhaps less than

1ms, to protect the main power devices from thermal

overstress.

5 Verification of RB-MMC-BESS by simulation

To verify the feasibility of the proposed RB-MMC-

BESS and system control strategies, a fully switched sim-

ulation model has been developed as shown in Fig. 9,

where PCC denotes the point of common coupling. The

modulation method adopted in this simulation is the carrier

phase-shifted sinusoidal pulse-width-modulation methods.

Two simulated scenarios are considered in this section. The

first simulation focuses on the system control algorithms

under normal operating conditions, thus demonstrating

control of SOC and power. The second simulation verifies

the DC fault handling capabilities of the RB-MMC-BESS

under a typical DC pole-to-pole fault.
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5.1 Scenario 1: RB-MMC-BESS under normal

operating conditions

In this scenario, all battery banks in phase a have been

initialized with different SOC. After the RB-MMC-BESS

starts, the power command P* = 2 MW is issued, and all

battery banks in the RBSMs are discharging. The proposed

power control and SOC balancing control algorithms have

been tested and the results are illustrated in Fig. 10.

The convergence SOC curves while discharging is

shown as Fig. 10a. It is clear that the RBSMs with higher

SOC discharge quicker, while some RBSMs with lower

SOC are recharged for a period to bring the SOC closer

together, before they convert to the same value. With the

proposed controller, all the RBSMs’ battery banks are

completely balanced after 9 s. From the power transmission

point of view, the active and reactive power are not

affected by the SOC balancing controls, as shown in

Fig. 10b. Note that the battery parameters are adjusted to

make the simulation time short for this demonstration.

5.2 Scenario 2: RB-MMC-BESS under typical DC

fault condition

Since this paper mainly concerns the DC fault handling

capability of the proposed topology, simulation of a nine-

level RB-MMC-BESS is sufficient to demonstrate the

functionality while maintaining simulation efficiency.

Table 2 summarizes the simulation parameters. The fault

scenario is a non-permanent DC pole-to-pole fault scenario

that occurs at 0.3 s and is cleared at 0.4 s. The simulation

results are shown in Fig. 11 and Fig. 12.

From t = 0 s to 0.3 s, the RB-MMC-BESS operates at a

power rating of 1 MW, supplied by battery banks in the

RBSMs. When the DC pole-to-pole fault occurs at t = 0.3 s,

the common DC link voltage UDC drops to zero immedi-

ately, shown in Fig. 11a. This is accompanied by an inrush

DC short current in the fault point, as seen in Fig. 11b. It is

further supposed that it takes 0.1 ms to block all the trigger

pulses so the RB-MMC-BESS can clear the fault currents.

According to the fault blocking mechanism theory in

Section 4, the 2n series-connected auxiliary capacitor

voltages ucsI provide the inverse voltage that will help to

extinguish the arc fault current in time. Fig. 11c and

Fig. 11d illustrate the grid voltages and currents during the

DC fault. The short circuit fault energy mainly comes from

the DC fault loop shown in Fig. 6. Because the blocking

measures are timely, the grid input currents reduce quickly

to zero, while the grid voltages are not significantly

affected. AC power transmission, shown in Fig. 11e, is

interrupted by the DC fault and recovers very quickly after

the non-permanent fault is cleared.

Fig. 12 illustrates the performance of RBSMs during the

DC pole-to-pole short circuit fault. The SOC and capacitor

voltage of each RBSM is shown in Fig. 12a and Fig. 12b.

Since all IGBTs are blocked in time, the capacitor voltages

remain almost constant at their value at the time of failure,

resulting in the constant SOC of the battery banks. This

maintains a reasonable condition for restarting the RB-

MMC-BESS after the fault is cleared.

Section 3 found that the circulating current can be

controlled according to the desired recharge current of the

battery banks and the equalizing time. Fig. 12c shows the

circulating current during the DC fault. As soon as the

RBSMs go into fault protection mode, the fault current if
transfers to the bypass circuits and starts charging the

auxiliary capacitors Cs through TS. Fig. 12d illustrates the

voltage stress of RBSMs. It can be seen that ucs is directly

applied to the lower switches T2 and T3 when fault pro-

tection mode is enabled.

Table 2 Simulation parameters

System parameters Value

AC line-to-line voltage 7.2 kV

DC link voltage 16.0 kV

RBSM capacitor voltage 2.0 kV

RBSM capacitance 8.2 mF

Leg inductance 3.5 mH

Short circuit resistance (Rf) 5.0 mX

Auxiliary capacitance (Cs) 0.15 lF

-0.5

0.5

1.5

2.5

0 2 4 6 8 10 12

P
(M

W
)

P
Q

0

1.0

2.0

Q
(M

va
r)

-0.5

0.5

1.5

2.5

0

1.0

2.0

t (s)

4 6 8 10 12
t (s)

54.4

54.5

54.6

54.7

54.8

54.9

SO
C

(%
)

0 2

55.0

(a) SOCs of the battery banks

(b) Power transferred

Fig. 10 Convergence of SOC of the simulated battery banks

Reverse-blocking modular multilevel converter for battery energy storage systems 659

123



www.manaraa.com

Fig. 13 compares the simulated DC fault handling

capabilities of a RB-MMC-BESS and a traditional MMC-

BESS system. Once DC short circuit fault occurs in the
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RB-MMC-BESS and all IGBTs are blocked, the series-

connected Cs voltage increases quickly to provide an

inverse voltage to suppress the fault current. However, due

to the lack of fault current suppression measures, the fault

current in the traditional MMC-BESS increases dramati-

cally. The peak value may reach nearly 18 times that of the

RB-MMC-BESS under the same conditions. It is evident

that the RB-MMC-BESS has better fault blocking capa-

bilities, and this one of its salient merits.

6 Conclusion

This paper has investigated the operation and control of

a proposed reverse-blocking modular multilevel converter

with a distributed battery energy storage system (RB-

MMC-BESS) for interfacing low-voltage batteries to the

medium or high voltage grids. Its theoretical performance

has been analyzed and the findings have been confirmed

through simulation.

Unlike conventional MMC-BESS designs, sub-modules

with integrated battery banks use two anti-parallel RB-

IGBTs and an additional bypass circuit. The proposed

design can block fault currents effectively with reduced

requirement for precise trigger pulses during fault condi-

tions. This greatly enhances the ability of the BESS to

respond to fault conditions and to ride through non-per-

manent faults.

The RB-MMC-BESS also employs direct management

of state of charge (SOC) of battery banks, rather than sub-

module voltages. Control algorithms combining power

control and SOC control have been developed and

demonstrated through simulation. The standard modulation

strategies can be employed under the normal operating

condition.
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